日日干日日摸-日日干天天操-日日干天天草-日日干天天插-精品一区二区三区在线观看-精品一区二区三区在线观看l

437bwin必贏國際官網(集團)有限公司-SouG百科

學術報告(兩場):Energy Efficient Hardware Accelerators for Graph Processing and Learning

發布時間:2024-05-28     瀏覽量:

報告1題目:Energy Efficient Hardware Accelerators for Graph Processing and

Learning

報告時間:2024年5月2915:00-15:45

報告地點:437bwin必贏國際官網八樓報告廳

報告人:何丙勝

報告人單位: National University of Singapore

報告人簡介:

Dr. Bingsheng He is currently a Professor and Vice-Dean (Research) at School of Computing, National University of Singapore. His current research interests include cloud computing, database systems and high performance computing. He has been a winner for industry faculty awards from Microsoft/NVIDIA/Google/ Xilinx/Alibaba. His work also won multiple recognitions as “Best papers” collection or awards in top forums such as SIGMOD 2008, VLDB 2013 (demo), IEEE/ACM ICCAD 2017, PACT 2018, IEEE TPDS 2019, FPGA 2021 and VLDB 2023 (industry). Since 2010, he has (co-)chaired a number of international conferences and workshops, including IEEE CloudCom 2014/2015, BigData Congress 2018, ICDCS 2020 and ICDE 2024. He is an ACM Distinguished member (class of 2020).

報告摘要

Graphs are de facto data structures for many data processing applications, and their volume is ever growing. Many graph processing tasks are computation intensive and/or memory intensive. Therefore, we have witnessed a significant amount of effort in accelerating graph processing tasks with heterogeneous architectures like GPUs, FPGAs and even ASIC. In this talk, we will first review the literatures of large graph processing systems on heterogeneous architectures. Next, we present our research efforts, and demonstrate the significant performance impact of hardware-software co-design on designing high performance graph computation systems and applications. Finally, we outline the research agenda on challenges and opportunities in the system and application development of future graph accelerators. More details about our research can be found at http://www.comp.nus.edu.sg/~hebs/.

邀請人:杜博、江佳偉、祝園園


報告2題目:面向新興計算架構的高效圖數據處理

報告時間:2024年5月2915:45-16:30

報告地點:437bwin必贏國際官網八樓報告廳

報告人:孫世軒

報告人單位:上海交通大學

報告人簡介:

孫世軒博士目前是上海交通大學計算機科學與工程系長聘教軌副教授。此前,在新加坡國立大學從事博士后研究員工作(2020-2023)。孫世軒于香港科技大學獲得博士學位(2015-2020),同濟大學獲得本科和碩士學位(2007-2014)。他的主要研究方向是大數據系統和并行計算,目前專注于高性能圖數據處理的研究;研究成果發表在SIGMODVLDBASPLOSICDE等頂級會議。他入選了國家級青年人才引進計劃,上海市青年人才引進計劃。

報告摘要

作為有效建模和分析實體間關聯關系的方式,圖被廣泛用于社交網絡、在線支付、互聯網等實際應用中。然而,圖數據的海量性、稀疏性和異構性,以及圖計算負載的多重動態性,為大規模圖計算的性能和硬件資源的有效利用帶來巨大挑戰。為了應對上述挑戰,我們著重研究面向新興計算架構的圖數據處理,基于圖數據和計算負載特性,挖掘新興計算架構的優勢,提升系統的高效性。本次報告將介紹我們在基于Serverless架構和GPU加速的圖數據處理方面的進展。

邀請人:杜博、江佳偉、祝園園