報告題目:Dynamic Data Stream Mining with Scarcity of Labels
報告時間:2024年10月29日15:00
報告地點:437bwin必贏國際官網E202會議室
報告人:楊圣祥
報告人單位:英國德蒙福特大學

報告人簡介:1999年獲東北大學博士學位。1999-2012年,分別在英國倫敦國王學院,萊斯特大學和布魯內爾大學工作。現任英國德蒙福特大學(De Montfort University)計算機科學與信息學院教授、計算智能研究中心主任和人工智能研究院副主任。楊教授長期從事計算智能理論、方法及應用研究,在計算智能方法、演化計算求解動態優化和多目標優化問題、智能網絡優化和數據流分析等方面的研究做出了突出貢獻,其研究工作得到英國和歐盟研究基金會以及工業界的大力資助,先后承擔了30余項科研基金項目。出版英文專著1部和英文編著2部,編輯國際會議論文集10余部,發表論文460多篇,其Google Scholar引用21500余次,H-index為75,入選2018年-2024年美國斯坦福大學發布的“全球前2%頂尖科學家”榜單。楊教授應邀擔任亞洲計算智能協會副主席,擔任10余種國際知名期刊副主編或編委,擔任國際大會程序委員會主席和分會主席60余次,應邀做國際會議大會報告或專題報告30余次,曾任IEEE計算智能協會動態和不確定環境下的演化計算專家組主席和智能網絡系統專家組創始主席。
報告摘要:Data stream mining is a natural and necessary progression from traditional data mining. However, it presents additional challenges to batch analysis: along with strict time and memory constraints, change is a major consideration. In a dynamic data stream, the underlying concepts may drift and change over time. The challenge of recognizing and reacting to change in a stream is compounded by the scarcity of labels problem. This talk presents our recent work to evaluate unsupervised learning as the basis for online classi?cation in dynamic data streams with a scarcity of labels. A novel stream clustering algorithm based on the collective behavior of ants, called Ant Colony Stream Clustering (ACSC), is present. Furthermore, a novel framework, Clustering and One class Classi?cation Ensemble Learning (COCEL), for classi?cation in dynamic streams with a scarcity of labels is described. The proposed framework can identify and react to change in a stream and hugely reduces the number of required labels (typically less than 0.05% of the entire stream). Finally, some conclusions will be made.
邀請人:王峰
