報告題目:Evolutionary Learning: From Theory to Practice
報告時間:2024年11月4日14:30
報告地點:437bwin必贏國際官網E202
報告人:錢超
報告人單位:南京大學

報告人簡介:錢超,南京大學人工智能學院教授、博導。長期從事人工智能中演化學習基礎理論研究,以第一/通訊作者在人工智能國際一流期刊和會議上發表50余篇論文,出版專著《Evolutionary Learning》,獲ACM GECCO’11最佳理論論文獎,受邀擔任IEEE計算智能學會“演化算法理論分析”工作組主席,獲CCF-IEEE CS青年科學家獎(2023)。部分成果成功應用于華為工廠排產、無線網絡優化、芯片寄存器尋優等任務,獲2次華為“難題揭榜”火花獎,落地華為產品線;應用于自然科學基礎問題(如土壤微生物源碳預測),成果以共同一作發表于美國國家科學院院刊PNAS。擔任人工智能/演化計算權威國際期刊Artificial Intelligence、Evolutionary Computation、IEEE Trans. Evolutionary Computation等編委,在國際人工智能聯合大會IJCAI’22作Early Career Spotlight報告,并將擔任第22屆亞太人工智能國際會議PRICAI’25程序委員會主席。獲國家優秀青年科學基金(2020),并主持新一代人工智能國家科技重大專項(青年科學家)。指導本科生獲國家自然本科生項目,執教《啟發式搜索與演化算法》被研究生選為“我心目中的好課程”,獲南京大學青年五四獎章、“師德先進”青年教師獎。
報告摘要:Machine learning tasks often involve complex optimization, like black-box and multi-objective optimization, which may make conventional optimization algorithms fail. Evolutionary algorithms, inspired by Darwin’s theory of evolution, have yielded encouraging outcomes. However, due to their heuristic nature, most outcomes to date have been empirical and lack theoretical support. In this talk, I will introduce our efforts towards building the theoretical foundation of evolutionary learning and developing better algorithms inspired by theories. Finally, I will introduce some successful applications in industry (e.g., electronic design automation) and science (e.g., studying the origin and evolution of life).
